Computing external farthest neighbors for a simple polygon
نویسندگان
چکیده
منابع مشابه
Computing Farthest Neighbors on a Convex Polytope
Let be a set of points in convex position in . The farthest-point Voronoi diagram of partitions into convex cells. We consider the intersection of the diagram with the boundary of the convex hull of . We give an algorithm that computes an implicit representation of in expected time. More precisely, we compute the combinatorial structure of , the coordinates of its vertices, and the equation of ...
متن کاملL_1 Geodesic Farthest Neighbors in a Simple Polygon and Related Problems
In this paper, we investigate the L1 geodesic farthest neighbors in a simple polygon P , and address several fundamental problems related to farthest neighbors. Given a subset S ⊆ P , an L1 geodesic farthest neighbor of p ∈ P from S is one that maximizes the length of L1 shortest path from p in P . Our list of problems include: computing the diameter, radius, center, farthestneighbor Voronoi di...
متن کاملThe Geodesic Farthest-point Voronoi Diagram in a Simple Polygon
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O(n log log n+m logm)time algorithm to compute the geodesic farthest-point Voronoi diagram of m point sites in a simple n-gon. This i...
متن کاملFarthest-Polygon Voronoi Diagrams
Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log n) time algorithm to compute it. We also prove a number of structural properties of this ...
متن کاملComputing Geodesic Furthest Neighbors in Simple Polygons
An algorithm is presented for computing geodesic furthest neighbors for all the vertices of a simple polygon, where geodesic denotes the fact that distance between two points of the polygon is defined as the length of an Euclidean shortest path connecting them within the polygon. The algorithm runs in O(n log n) time and uses O(n) space; n being the number of vertices of the polygon. As a corol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1991
ISSN: 0166-218X
DOI: 10.1016/0166-218x(91)90063-3